An Augmented Lagrangian Method for Sparse SAR Imaging

نویسنده

  • H. Emre Güven
چکیده

In this paper, we present a solution to the constrained l1-norm minimization problem for sparse SAR imaging. The techniques rely on the recent advances in the solution of optimization problems, based on the Augmented Lagrangian Methods (ALMs), namely the Alternating Direction Method of Multipliers. Here, we present an application of CSALSA (an ALM for constrained optimization problems) to SAR imaging, and introduce a new weighting scheme to improve the sparsity of the reconstructions. We then compare the performances of several techniques to understand the effectiveness of the ALMs in the context of SAR imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Accelerated Augmented Lagrangian Method with application to Compressed Sensing SAR Imaging

In this paper we present an accelerated Augmented Lagrangian Method for the solution of constrained convex optimization problems in the Basis Pursuit De-Noising (BPDN) form. The technique relies on on Augmented Lagrangian Methods (ALMs), particularly the Alternating Direction Method of Multipliers (ADMM). Here, we present an application of the Constrained Split Augmented Lagrangian Shrinkage Al...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

Sparse Constrained Reconstruction for Accelerating Parallel Imaging Based on Variable Splitting Method

Parallel imaging is a rapid magnetic resonance imaging technique. For the ill-conditioned problem, noise and aliasing artifacts are amplified during the reconstruction process and are serious especially for high accelerating imaging. In this paper, a sparse constrained reconstruction problem is proposed for parallel imaging, and an effective solution based on the variable splitting method is co...

متن کامل

Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

BACKGROUND Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most s...

متن کامل

Advanced multi-plane phase retrieval using Graphic Processing Unit: augmented Lagrangian technique with sparse regularization

In our work we demonstrate a computational method of phase retrieval realized for various propagation models. The effects, arising due to the wave field propagation in an optical setup, lead to significant distortions in measurements; therefore the reconstructed wave fields are noisy and corrupted by different artifacts (e.g. blurring, "waves" on boards, etc.). These disturbances are hard to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014